Surface antireflection properties of GaN nanostructures with various effective refractive index profiles.

نویسندگان

  • Lu Han
  • Hongping Zhao
چکیده

GaN nanostructures with various effective refractive index profiles (Linear, Cubic, and Quintic functions) were numerically studied as broadband omnidirectional antireflection structures for concentrator photovoltaics by using three-dimensional finite difference time domain (3D-FDTD) method. Effective medium theory was used to design the surface structures corresponding to different refractive index profiles. Surface antireflection properties were calculated and analyzed for incident light with wavelength, polarization and angle dependences. The surface antireflection properties of GaN nanostructures based on six-sided pyramid with both uniform and non-uniform patterns were also investigated. Results indicate a significant dependence of the surface antireflection on the refractive index profiles of surface nanostructures as well as their pattern uniformity. The GaN nanostructures with linear refractive index profile show the best performance to be used as broadband omnidirectional antireflection structures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Studying Focusing Properties of Graded Index Photonic Crystals Made of Material with Different Refractive Index

In this paper we investigate focusing properties of graded index (GRIN) photonic crystal (PC) structures which are composed of different materials with different refractive indices. GRIN PC structure is constructed from air holes in dielectric background. The holes radii are varied in the normal direction to the propagation in such a way that a parabolic effective refractive index is produced. ...

متن کامل

Self-assembled nanostructures for antireflection optical coatings

We report the first results of self-assembled nanostructures using colloids for antireflection optical coatings. Two-dimensional (2D) periodic nano-structures were made by using self-assembled 2D colloidal crystals on top of a transparent substrate. An atomic force microscope was used to evaluate the quality of the nanostructure. The feature size of the structures was around 105 nm. This sub-wa...

متن کامل

Broadband and omnidirectional antireflection employing disordered GaN nanopillars.

Disordered GaN nanopillars of three different heights: 300, 550, and 720 nm are fabricated, and demonstrate broad angular and spectral antireflective characteristics, up to an incident angle of 60? and for the wavelength range of lambda=300-1800 nm. An algorithm based on a rigorous coupled-wave analysis (RCWA) method is developed to investigate the correlations between the reflective characteri...

متن کامل

Colloidal subwavelength nanostructures for antireflection optical coatings.

A two-dimensional (2D) subwavelength nanostructure for antireflection coating is fabricated upon a transparent substrate. Self-assembled 2D colloidal crystals are used as a nanoscale composite material with controlled thickness and low refractive index. The feature size of the structure is approximately 105 nm. The structure is used for antireflection coating, and the measured reflectivity of a...

متن کامل

Light management for photovoltaics using high-index nanostructures.

High-performance photovoltaic cells use semiconductors to convert sunlight into clean electrical power, and transparent dielectrics or conductive oxides as antireflection coatings. A common feature of these materials is their high refractive index. Whereas high-index materials in a planar form tend to produce a strong, undesired reflection of sunlight, high-index nanostructures afford new ways ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optics express

دوره 22 26  شماره 

صفحات  -

تاریخ انتشار 2014